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Previous investigation of the length of coding sequence lengths (CDS) in the bacterial circular chro-
mosome revealed short range correlation in the series of these data. We have further analyzed the 
averaged  periodograms of these series and we found that the organization of CDS can be well de-
scribed by first order autoregressive processes. This involves interaction between the neighboring 
terms. The autoregressive analysis may have great potential in modeling various physical and bio-
logical processes like light emission of galaxies, protein organization, cell flickering, cognitive 
processes and perhaps others.   
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1. Introduction 
Bacterial chromosome has a relatively simple structure consisting of a succession of cod-
ing (CDS) and non-coding sequences. Each sequence consists of a specific series of types 
and number of bases. The coding sequences represent genes and they dominate the total 
content of bases in the bacterial chromosome. Recent work revealed the important signi-
ficance of the length and distribution of proteins (which is similar to the coding se-
quences) [1-3]. The earlier studies assumed that the organization of the genome is ran-
dom i.e. the succession of the CDS lengths consist of uncorrelated data. However later 
investigations suggest that some order exists in the CDS length series [4-7].  
The Detrended Fluctuation Analysis (DFA) of CDS length series suggests that bacterial 
genomes are short range correlated [7]. However when the same series are subjected to 
Fourier Transform they produce a spectrum which appears to be linear in double log 
plots. This apparent scale invariance means that the series are long range correlated data 
which contradicts DFA results. One aim of this study was to solve this apparent contra-
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diction. The solution of the problem lays mainly in Mandelbrot’s general suggestion that 
a spectrum should be averaged out first in order to uncover its meaning [8-9]. Indeed the 
averaging procedure of the spectrum revealed its nonlinear characteristic. Further we re-
port here that such spectra are described by autoregressive models which represent short 
range correlation. 

2. Bacterial genome data and strategy of analysis 
Each species of bacteria or archaea is characterized by a number of n coding sequences 
each having a specific length lk where k=1…n. The length is expressed in number of 
bases. Each DNA molecule is known to consist of two strands plus and minus or leading 
and lagging strands. The following series of CDS lengths are considered in our analysis: 
A) The full series consisting of the natural sequence of lengths as they succeed in the 
genome, B) The series of CDS lengths in the strands plus and minus respectively. There-
fore the subject of our analysis are the series l(+/-), l(+) and l(-).  The data were extracted 
from the web site of European Molecular Biology Laboratory (EMBL) by using simple 
programs. An example of series for a bacteria species is illustrated in fig.1. 

 
Figure 1 Coding sequence length series for Bacillus subtilis. The series refer to the full genome series denoted 
as l(+/-).  

These series were analyzed by DFA and by an autoregressive model. The analysis re-
sulted in two parameters: alpha – the correlation exponent and phi – the interaction factor 
respectively (see below). 
It was considered of interest to explore comparatively the genome organization of some 
bacteria which are often used in explorative studies. We have also considered several 
other species of bacteria in order to see if differences exist among them.  Some of bacte-
ria exist as different cell strains so that various cell strains of the same species were ana-
lyzed. Although archaea forms a distinct domain they have a similar structure compared 
to the domain of bacteria so we included in our comparative analysis an archaea species. 
The full list of analyzed species is as follows: Archaeoglobus fulgidus, Bacillus subtilis, 
Bacillus cereus ATCC14, Bacillus halonduras, Escherichia coli O157H7 EDL933, E.coli 
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O157:H7 str. Sakai, E.coli str.K12 substr.MG1655 W3110, E.coli UTI 89, E.coli str. K-
12 W311, E.coli APEC O1, Haemophilus influenzae 86, H. influenzae ATC, H. influenzae 
PittEE, H.influenzae PittGG, Helicobacter pylori 26695, Helicobacter pylori HPAG1, 
Helicobacter pylori J99.  
First we present the result of the DFA analysis which proves that the series are short 
range correlated. Then we calculate the periodograms of the series and analyze them by 
an autoregressive model. Finally we compare the outcome of these types of analyses. 
While DFA simply shows that there is a correlation order in the bacterial genomes, the 
use of the autoregressive model is to show how the order is achieved in the genomes. 
This reveals that the length of CDS terms interact and the strength of their interaction. 
The succession of operations can be summarized as following: i) Detrend the series of 
data by subtracting various degrees of polynomial fits; ii) Discrete Fourier transform of 
the series; iii) Periodogram averaging using 1-21 terms; iv) Fit the spectrum to an AR(1) 
model. The resulting parameters are the interaction factor φ and the dispersion σ. Their 
values depend on the degree of the polynomial fit used for the detrending procedure, and 
on the number of spectral terms used for averaging procedure. If the data can be de-
scribed by an AR(1) model, choose the final values of φ and σ, by analyzing the plot of φ 
and σ against the polynomial degree and the number of averaging terms. This procedure 
was applied to l(+-), l(+) and l(-)  series 

3. Methods of analysis  

3.1. Detrended fluctuation analysis of bacterial genomes 
Our initial method of investigation was the well known DFA. The DFA method was orig-
inally developed to investigate long-range correlation in non-stationary series [9]. First 
DFA integrates the series which is further divided into n boxes of equal length. A least 
square line is fit to the data in each box n which represents the trend in that box. The in-
tegrated time series y(k) is detrended by subtracting the local trend yn(k) in each box. 
Then the root-mean square of the resulting series is calculated as a fluctuation function: 
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Here N is the number of terms. F(n) typically increases with box size n and a linear rela-
tionship on a double log graph indicates the presence of scaling:  
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The value of α exponent is 0.5 for uncorrelated data, then values ranging between 0.5 < α 
< 1 indicates a long-range correlation while values between 0<α<0.5 represents anti-
correlation. The key step in a long-range correlation decision is that DFA plot should be 
linear over the whole range of box sizes covering the series.  Our earlier investigation 
was prompted by the observation that the DFA plot of CDS length series was generally 
non-linear over the whole chromosome series [7]. Strictly speaking a DFA plot should be 
linear if long-range correlation would extend over the whole chromosome of over, at 
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least, two orders of magnitude of the box size n. Nonlinearity of the DFA plot can be a 
simple and direct evidence for short-range correlation as recently shown by a DFA inves-
tigation of autoregressive process [10]. An example of a DFA plot for a l(+) series is illu-
strated in figure 2.  The plot is clearly nonlinear. 

 
Figure 2 Detrended fluctuation analysis for the plus strand of Bacillus subtilis CDS length series. 

A further simple way to check for short-range organization of the series is to apply a 
segmentation procedure of the CDS series and analyze the correlation in these segmented 
series by DFA. The correlation exponents should be unchanged if long-range correlation 
was operative. Short range correlation would result in different correlation exponents for 
different segments [10]. 

3.2. Autoregressive modeling of the correlation spectra 
There is a key problem which recommends the analysis of the data by correlation spec-
troscopy.  A simple Fourier transform results in noisy spectrum which can be fitted by a 
straight line. This is equivalent to scale invariance or a fractal like structure. However 
averaging the spectrum (as strongly recommended by Mandelbrot) results in non linear 
spectrum which contradicts the fractal like interpretation. This is illustrated in figure 4 for 
a bacteria species. Such a non linear spectrum is characteristic for autoregressive 
processes which can be easily described in an analytical way as shown below. 
A discrete stochastic process {Xn, n=0, ±1, ±2,…} is called autoregressive process of 
order p, denoted AR(p), if  {Xn} is stationary and for any n: 
 

 npnpnn ZXXX =−−− −− ϕϕ ...11   (1) 

where {Zn} is a Gaussian white noise with zero mean and variance σ2 .The real parame-
ters φi, i =1, .., p, can be interpreted as a measure of the influence of a stochastic process 
term on the next term after i time steps. The properties of AR(p) processes have been 
studied in detail and they are the basis of the linear stochastic theory of time series [11] 
and [12]. Equation 1 has a unique solution if the polynomial Φ(z)=1−φ1z−...−φpzp has no 
roots z with |z| =1. If in addition Φ(z) ≠1 for all |z| > 1, then the process is causal, i.e. the 
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random variable Xn can be expressed only in terms of noise values at previous moments 
and at the same moment.  
The spectral density of an AR(p) process is:  
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where ν is the frequency. For an AR(1) process, the spectral density in equation 2 be-
comes:  
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where φ is the only parameter φi in this case. The above mentioned formulas are valid for 
ideal stochastic processes of finite length.  
The time series found in practice have a finite length and usually they are considered rea-
lizations of a finite sample of an AR(1) process of infinite length. Therefore, the changes 
of the equations 2 and 3 have to be analyzed for a sample with finite length {Xn, n=1, 2, 
..., N} extracted from an infinite process {Xn, n=0, ±1, ±2, ...}. A detailed analysis of the 
power spectrum of the AR(1) process and the influence of the finite length is contained in 
[13]. In this paper some of the main conclusions are discussed.  
The sample estimator of the spectral density is the periodogram:  
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where AN (ν) is the discrete Fourier transform of the sample:  
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Since the sample contains a finite number of components, there are only N independent 
values of AN(ν) and IN(ν). Usually, these values are computed for the Fourier frequencies 
νj = j/N, where j is a integer satisfying the condition −0.5 <νj ≤ 0.5. The periodogram of 
an AR(p) process is an unbiased estimator of the spectral density:  
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where (νj −0.5N) < ν ≤ (νj+0.5N) [13]. Hence, increasing the sample length N, while the 
time step t is kept constant, the average periodogram becomes a better approximation of 
the spectral density (equation 6). However, a single periodogram is not a consistent esti-
mator, because it does not converge in probability to the spectral density, i.e. the standard 
deviation of IN (νj) does not converge to zero, and two distinct values of the periodogram 
are uncorrelated, no matter how close the frequencies are when they are computed.  
Usually, the spectral density and the periodogram are plotted on a log-log scale. The lo-
garithmic coordinates strongly distort the shape of the graphic because by applying the 
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logarithm, any neighborhood of the origin is transformed into an infinite length interval 
and the value of f(0) cannot be plotted. For a sample with N terms, the first value of the 
spectral density is obtained for the minimum frequency νmin =1/N. Figure 2a shows the 
spectral density in equation 3 for N = 1024, σ =1 and different values of the parameter φ. 
One can observe that the AR(1) processes for higher φ values can be easily approximated 
by a fractal-like behavior. For φ =0.90 and especially for φ =0.99, a significant part of the 
power spectrum is almost linear with a slope equal to −2, which corresponds to β =2. A 
significant part of the spectrum could be regarded as linear for smaller value of φ (for 
example φ=0.5 in figure 3). 

 
Figure 3 The spectral density  of an AR(1) process for N = 1024,  σ =1 and different values of the interaction 
factor among close terms φ. 

For small frequencies, the AR(1) spectral density is strongly stretched in log-log coordi-
nates such that a plateau appears (figure 2a) with a value given by:  
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From equation 3 it follows that the plateau corresponds to the small values of ν, when the 
variable term at the denominator can be neglected in comparison with the constant term. 
Using the quadratic approximation of the cosine function, the condition that the graph of 
the AR(1) power spectrum has a plateau ν < (1 − φ)/2π ϕ  is obtained. If φ tends to 1, the 
plateau appears at smaller values of the frequency. Therefore, if N is large enough, the 
periodogram of an AR(1) sample has a plateau at small frequencies (if N is large, then 
νmin → 0).  
A time series {xn , n=1, 2, ..., N} as a realization of a sample {Xn , n=1, 2, ..., N} from an 
AR(1) process is considered. Applying the discrete Fourier transform (equation 4) to the 
time series {xn}, and then computing the periodogram (equation 5), values randomly dis-
tributed around the spectral density (equation 3) of the AR(1) are obtained. Since the pe-
riodogram is not a consistent estimator, by increasing the length N of the sample, the pe-
riodogram fluctuations around the theoretical spectral density are not reduced. Consistent 
estimation of the spectral density may be obtained using averaging of the periodogram on 
intervals with length of magnitude order of N  [13]. Choosing the optimum weight 
function is a difficult task, because, if the periodogram is smoothed too much, then the 
bias with respect to the theoretical spectrum can become large. From various weight 
functions [16] the simplest one is used, i.e. the averaging with equal weights on symme-
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tric intervals containing M Fourier frequencies, with M = 1, 3, 5, ..., 21. Then, the aver-
aged periodogram contains N − M +1 values, because for the first and last (M − 1)/2 val-
ues of the periodogram, the symmetric averaging cannot be performed.  
Let us consider that an AR(1) model for an averaged periodogram is to be found, i.e. to 
find the values of the parameters φ and σ. The minimum of the quadratic norm of the 
difference between the averaged periodogram and the theoretical spectral density of the 
AR(1) model has to be determined. The sample standard deviation of the time series and 
φ = 0 are used as initial values for the optimization algorithm.All calculations were per-
formed by using MATLAB [15]. 
Many series of data have non-stationary characteristics, so the application of Fourier 
transform to the data results in misleading spectra. A common procedure to avoid this 
complication is to use detrended fluctuation analysis[9]. This results in a correlation ex-
ponent free of the correlation introduced by the trend. However, in our case it is essential 
to obtain the corresponding spectrum, as the shape of the spectrum gives the relevant 
information (if either a power-law or a non-power law is operative). Consequently, an 
important preliminary step is to remove non-stationary characteristics in the series. We 
performed detrending by subtracting a polynomial fit from the original series. The prob-
lem is to determine the right polynomial fit. We performed 1 to 20 degree polynomial fits 
and generally found that a polynomial degree around 10 gives the most reliable result for 
φ and σ. The values of φ and σ also depended on the averaging procedure of the spectra 
so that optimizing the values of φ and σ involved optimizing both the detrending and the 
averaging procedures. The above mentioned polynomial fitting was chosen as its accura-
cy is comparable to the moving average method and to an automatic method for the esti-
mation of a monotone trend. The same work also showed that polynomial fitting for a 1/f 
noise proved to have the best performance [14]. 
 

4. Results  
Examples of non-averaged and averaged periodogram for the CDS length series for Ba-
cillus subtilis species are illustrated in figure 4. The non-averaged periodogram  (figure 
4a) can be well fitted by a straight line which can mistakenly interpreted as a long range 
correlation. However the real shape of the periodogram is revealed after averaging. (fig-
ure 4 b). The averaged periodogram is well fitted by an AR(1) process.  
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Figure 4 Periodogram for the length series of coding sequences of the plus (or leading strand) of Bacillus subti-
lis.  a) Non-averaged periodogram; b) Averaged periodogram and fitting with a first order autoregressive 
process. 

The corresponding AR(1) parameters φ as well as the correlation exponents resulting 
from DFA analysis are included in table 1 and 2 for a range o bacteria an archaea species. 
The parameter φ may vary between 0<φ<1. In the case of bacteria and archaea presented 
in table 1 this parameter varies between 0.52 for Bacillus subtilis and almost 0  for some 
strands of Haemophilus influenzae and Helicobacter pilori. This means that the strenght 
of interaction between the the length of CDS terms may vary widely from a medium val-
ue down to almost no interaction. Further this interaction is sensitive to the leading or 
lagging strands and also to the species strain. On the other hand the correlation exponent 
(table 2) generally has a rather low value indicating a weak correlation among the terms 
of the series. 
Higher order autoregressive processes where also tested. This involved additional interac-
tion between terms at higher distances in the series.  However it was concluded that the 
AR(1) modeling of the series proved to be quite satisfactory.   
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Table 1 The interaction strength φ of the first order autoregressive modeling of CDS lengths periodogram. 

Species + strand - strand both strands 
Archaeglobus Fulgidus φ = 0.01 φ = 0.16 φ = 0.14 

Bacilus subtilis φ = 0.52 φ = 0.43 φ = 0.44 
B Cereus ATCC14 φ = 0.19 φ = 0.05 φ = 0.13 

B Halonduras φ = 0.11 φ = 0.10 φ = 0.16 
E. Coli O157H7 φ = 0.15 φ = 0.21 φ = 0.24 

E. Coli Sakai φ = 0.21 φ = 0.26 φ = 0.20 
E. Coli K12 φ = 0.12 φ = 0.20 φ = 0.18 
E. Coli UTI φ = 0.14 φ = 0.21 φ = 0.24 
E Coli W311 φ = 0.17 φ = 0.14 φ = 0.18 
E Coli APEC φ = 0.18 φ = 0.15 φ = 0.19 

H Influ 86 φ = 0.07 φ = 0.13 φ = 0.13 
H Influ ATC φ = 0.11 φ = 0.07 φ = 0.12 

H Influ Pitt EE φ = 0.11 φ = 0.05 φ = 0.11 
H Influ. Pitt GG φ = 0.13 φ = 0.00 φ = 0.10 

H Pylori 266 φ = 0.05 φ = 0.00 φ = 0.02 
H Pylori HP φ = 0.05 φ = 0.02 φ = 0.03 
H Pylori J99 φ = 0.04 φ = 0.03 φ = 0.04 

Table 2 The correlation exponent for different species of bacteria and archaea resulting from the detrended 
fluctuation analysis  

Species + strand - strand both strands 
Archaeglobus Fulgidus  α= 0.50 α= 0.60 α=0.57  

Bacilus subtilis  α= 0.84 α= 0.67  α= 0.79 
B Cereus ATCC14  α= 0.60 α= 0.50  α= 0.55  

B Halonduras  α= 0.56  α= 0.55  α= 0.56  
E. Coli O157H7  α= 0.56 α= 0.60 α= 0.60 

E. Coli Sakai  α= 0.56 α= 0.62 α= 0.56 
E. Coli K12  α= 0.55 α= 0.57 α= 0.58 
E. Coli UTI  α= 0.56 α= 0.57 α= 0.60 
E Coli W311  α= 0.59 α= 0.54 α= 0.57 
E Coli APEC  α= 0.56 α= 0.55 α= 0.58 

H Influ 86  α= 0.53 α= 0.58 α= 0.55 
H Influ ATC  α= 0.53 α= 0.55 α= 0.52 

H Influ Pitt EE  α= 0.55 α= 0.55 α= 0.54 
H Influ. Pitt GG  α= 0.62 α= 0.50 α= 0.54 

H Pylori 266  α= 0.50 α= 0.50 α= 0.51 
H Pylori HP  α= 0.54 α= 0.49 α= 0.51 
H Pylori J99  α= 0.53 α= 0.52 α= 0.54 

 
It is obvious that a relationship should exist among the correlation exponents α and the 
interaction factor φ for different species. This is illustrated in figure 5 for the three kind 
of series.It can be seen that the relationship is linear for l(+) and l(-) series while for the 
l(+-) series is non linear (figure 5). Non averaged periodograms give very similar results 
(not shown). This might suggests that the non-stationary contribution to the series are not 
important for the AR (1) modeling of the series.  
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Figure 5 The relationship between the correlation exponent alpha 1 (resulting from DFA analysis) and the 
strength of interaction phi 1 (first order autoregressive modeling). a) the strand + data, b) strand -  and c) strand 
+/- of Bacillus subtilis. 

Parameter φ of the autoregressive fitting seems to be more sensitive compared to the cor-
relation exponent. The impression at this stage is that first order autoregressive fitting of 
the CDS series is the best way to describe the order in these series. We further attempted 
to describe the order in the series of very different kind of phenomena which presented 
similar features of the spectrum. Such examples refer to length of protein series, biologi-
cal cell flickering or cognitive phenomena. [9]. Therefore autoregressive processes 
proved to be a useful model for describing the order in these phenomena.  
 

5.  The biological significance of the AR model 
 
A key parameter in the autoregressive model is the interaction factor φ. This characteriz-
es the strength of interaction of a stochastic process term on the next term after i time 
steps. For example a value of φ=0.9 for a first order AR model tells that the interaction 
between succeeding terms is quite strong compared to say a φ=0.2 case. Suppose the 
terms of the series are xi and xi+1. If an interaction factor of φ=0.9 applies than the terms 
of the series will be xi and (xi+xi+1)0.9 as compared to xi and (xi+xi+1)0.2. A stronger inte-
raction makes the second term to be higher than for a weaker interaction. Now we trans-
pose the general physical description of the autoregressive model to our biological prob-
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lem of coding sequences length. The terms of the series are in this case the length of the 
coding sequences. Suppose the terms of the series have similar or quite close values, or in 
other words the resemblance is strong. We can assimilate a strong resemblance to a 
strong interaction. At contrary, a significant difference in the length of CDS would mean 
a weak resemblance among the terms of series. Therefore in the case of our biological 
problem the meaning of parameter φ is the resemblance of the CDS lengths. As the mod-
el is a first order autoregressive process, this means that it is a matter of resemblance be-
tween successive terms. Resemblance may also occur after more than one step, for exam-
ple between the first and the third term of the series. Higher order autoregressive models 
may apply when interaction occurs between more that two terms at various distances. 
Resemblance may vary among different genomes as shown by the results in table 1.  

A plausible explanation for the validity of the AR model is the operon structure 
of the bacterial genomes. It is known that functionally related genes are often organized 
into operons. If functionally related genes have similar sizes, then we would also expect 
that CDS length would show local correlations. The existence of operons with similar 
CDS lengths can be easily noticed. However there is a diversity of operons as far as their 
content is concerned. Examples of various operons are listed in table 3. 
 
Table 3 Examples of operons of Eschericia coli and the length of their enzymes  
 
Operon  

Enzymes 
Length 

[bp] 
Operon 

Enzymes 
Length 

[bp] 
Operon 

Enzymes 
Length 

[bp] 
cys  ton  leu  
      P 1017 E 1563 A 1572 
      U 834 D 1596 B 1092 
      W 876 C 1359 C 1401 
       A 1098 B 1194 D 606 
       M 912 A 807   
 
The cis operon shows a strong resemblance for the U and W enzymes and A and M en-
zymes respectively while P and U have a milder resemblance. There is a strong resem-
blance for the E and D enzymes of the ton operon while resemblance decreases down the 
column. The enzymes of leu operons have a weak resemblance. The overall resemblance 
for all successive terms is given by the value of φ in table 1. The striking case in table 1 is 
Bacillus subtilis which has the highest value of φ. This means that more similar CDS 
lengths exist in this genome compared to the rest of genomes. On the other hand there are 
clear differences between the plus and minus strands of the same genome. This must have 
a strong biological relevance as it points out to the well known differential distribution of 
genes in the two strands [16] For example the first four examples of E.coli in table 1 re-
veals that the minus strand is characterized by higher values of φ. That is resemblance of 
genes is higher in the minus strand compared to plus strand and this rule applies for all 
these four cases of E.coli. Higher values of φ could involve a more uniform and presum-
ably more functionally related genes. This applies for the last two cases of E.coli in table 
1, as well as for Bacillus species in the same table. At contrary lower values of φ could be 
associated to a larger diversity of genes. The frequency of leading strand genes is 75 % 
in B. subtilis [17] but only 55 % in E. coli [18]. A first systematic survey of gene strand 
bias showed that genomes could have from 55 to 80 % of genes in the leading strand, al-
though systematically more than 85 % of ribosomal proteins were coded in the leading 
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strand of these genomes [16]]. In fact, 78 % of the genes of Firmicutes (including mycop-
lasmas) are in the leading strand, compared with 58 % for the other genomes [19] This 
might be tentatively related to the generally higher values of φ for the + strand. It remains 
to establish the validity of this correlation for other genomes as well. 

 Despite the relationship between correlation and autoregressive parameters (fig 
5) it is evident that the autoregressive parameter is more sensitive than the correlation 
parameter. The range of values for the φ parameter lay between 0.1 and 0.2 which can be 
regarded as low values.  Other biological processes may show much higher values (such 
as 0.8-0.9 for flickering of red blood cells [9, 20].  

We may conclude that the autoregressive modeling could be useful for compara-
tive genomics. 
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